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SUMMARY

Reinforcement learning is an adaptation or learning method, that is based the same

principles by which humans and animals learn to control a certain process. If an action is

followed by a satisfactory state of affairs, or an improvement in the state of affairs, then the

tendency to reproduce that action is strengthened, or reinforced.

Experience that has been gained over time, has to be remembered. For a process

with a limited set of states and actions, this can be done in a tabular manner. For most

systems, however, the state and action spaces are far too big, and alternatives have to be

found to store and process the data. Several techniques exist that deal with this problem

in different ways.

The currently used controllers are designed using an algorithm based on the com-

bination of reinforcement learning and fuzzy logic, called neuro-fuzzy controllers. Gained

experience is stored in the state-action table, where fuzzy logic is used to interpolate be-

tween states and actions. Besides the neuro-fuzzy method, other techniques exist, that do

not rely on the principle of interpolation, but on quantization or generalization.

This project is concerned with investigating the applicability of a most promising

alternative method that uses reinforcement learning in a continuous space and time frame-

work. The gained experience is generalized by means of normalized radial basis functions.

An adaptive controller has been designed, that is capable of controlling the lateral port-to-

port positions and velocities during the proximity operations of the rendezvous and docking

mission of the International Space Station (ISS) and the Autonomous Transfer Vehicle

(ATV).

The complexity of these operations originates from the translational and rotational

coupling of docking port motions and the high-frequency disturbance, caused by the flexi-

bility of the station, that has to be compensated for. The method of reinforcement learning

has been chosen as adaptation method because it does not have to make use of any physical
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model for optimizing the current controller design. This could be an advantage because of

the lack of reliable models for some of the disturbances.

As a means to verify the correctness of the algorithm, the controller was first applied

to the inverted pendulum. Some improvements have been made to the original algorithm

that improve its capabilities. The algorithm has been thoroughly tested, without and with

model learning, respectively. Results of the latter are included in this thesis. The controller

was then transferred to the ATV-ISS simulator, where two copies have been used in parallel.

A comparison between the neuro-fuzzy and the continuous space and time method

has been made. The algorithm in its current form, does not perform as well as the neuro-

fuzzy method. However, there remain several options to improve the algorithm that have not

been implemented yet. Besides the simulation results, a thorough theoretical explanation

of the reinforcement learning method, as well as a proposal for future research has been

given.

A problem that will arise in the future, is that advanced controllers that will eventu-

ally be designed using this or related techniques, will be very intransparent to the designer.

An extension to Kohonen’s self-organizing map has been proposed, that addresses this prob-

lem by using principal component analysis. This technique could be used as an adaptive

clustering technique, as well as its interactive monitoring, as a means to gain insight in the

evolution and learning principles of the controller.
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CHAPTER 1

INTRODUCTION

1.1. The rendezvous and docking mission

The rendezvous and docking/berthing mission consists of a series of orbital manoeu-
vres or controller trajectories, which successively bring the active vehicle (chaser) into the
vicinity of, and eventually into contact with, the passive vehicle (target). The last part
of the approach trajectory has to put the chaser inside the narrow boundaries of position,
velocities, attitude and angular rates required for the docking process.

• In the case of docking, the guidance, navigation and control (GNC) system of the
chaser controls the vehicle state parameters required for entry into the docking inter-
faces of the target vehicle and for capture.

• In the case of berthing, the GNC system of the chaser delivers the vehicle at nominally
zero relative velocities and angular rates to a meeting point, where a manipulator,
located either on the target or chaser vehicle, grapples it, transfers it to the final
position and inserts it into the interfaces of the relevant target berthing port.

The complexity of the rendezvous approach and docking process and of the systems
required for its execution results from the multitude of conditions and constraints which
must be fulfilled.

For example, any dynamic state (position and velocities, attitude and angular rates)
of the chaser vehicle outside the nominal limits of the approach trajectory could lead to
collision with the target, a situation dangerous for crew and vehicle integrity. All approach
trajectories must be inherently safe, even in the case of partial loss of thrust capability or
control at any point of the trajectory.

The onboard system must cope with all these constraints by active control; otherwise
the time-line and all events have to be pre-planned or controlled by ground. After launch,
however, the nominal interaction with the spacecraft by ground is limited. For unmanned
vehicles this leads to the requirement of high onboard autonomy. The combination of all
the requirements, conditions and constraints, make the automatic control of rendezvous and
docking/berthing by an onboard system a very complex and challenging task.
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1.2. Close range rendezvous operations

The rendezvous and docking (RVD) mission basically consists of two parts: a ren-
dezvous phase also called GPS phase and the proximity operations or rendezvous sensor
(RVS) phase. During RVS phase, the docking mechanism of the chaser vehicle, has to be
aligned to the docking port of the target vehicle, the ISS.

For this part of the mission, both translational and rotational motion are coupled
to each other. The actual docking axis will deviate from the nominal direction due to
attitude bias, attitude control motions and bending of the structure of the target vehicle.
This bending results in a high frequency motion of the center of gravity of the station that
causes the docking port to move up and down.

Further complications might come from internal and external disturbances working
on the ATV and the ISS. Examples of these disturbances are propellant slosh of the fuel
in the tanks of the ATV, the flexible motion of the ATV solar panels, the effect of the
truster plumes on the target vehicle, disturbances from the truster system or environmental
disturbances like there are the air drag, gravity gradient disturbance torques, or disturbance
forces from the Earth gravity field. Besides these disturbances, extra complications may
come from the navigation system containing measurement errors like measurement noise,
biases and time delays.

For some of the disturbances, reliable models that could be used for the controller
design are difficult, so not impossible, to identify. Modeling of the disturbances that could
be used for robust control designs is also a very complicated task. For this reason the
controller design according to the conventional methods that make use of these models
could often become hard.

1.3. Objective and scope

The goal of this project is to investigate whether or not modern control approaches
based on artificial intelligence and especially reinforcement learning, could be used in order
to improve the performance of the controllers currently used. It is proposed to replace
the original controllers, that are based on fuzzy logic and a simple form of reinforcement
learning, with reinforcement learning controllers based on more novel techniques, and make
a comparison with the neuro-fuzzy method, to see if there is still room for improvement.

Besides the neuro-fuzzy method, other techniques exist, that do not rely on the prin-
ciple of interpolation, but on quantization or generalization. It has been decided to design
the controller on the principle of generalization, because of the more recent publication on
generalization and the use of reinforcement learning equations in continuous time and space
[7][6], and because of a certain confidence in the author.
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The evaluation of algorithms based on quantization by means of the self-organizing
map [13][14] have not been included in this project, because of the limited amount of time
available. It would be very interesting, however, to compare the capabilities of these three
state of the art methods at a later stage.

In this project, we will use the self-organizing map, as a visualization tool for analysis
and online monitoring of high dimensional functions, such as the ones used for generalization
in the proposed reinforcement learning controllers. To this end, an extension to the self-
organizing map is proposed, that enables us to look inside the controller during operation.

The concept of R-control [2], where the relative translational and rotational motion
are decoupled, makes it possible to use an array of six independent controllers for the
resulting six degrees of freedom. The array consists of four PD controllers and two neuro-
fuzzy controllers, that control the lateral port-to-port positions and velocities, during the
proximity operations.

Using this setup, the parallel functioning of the algorithm as well as its behavior on
the ATV-ISS dynamics, can be verified using minimal computational resources. Further-
more, to make a good comparison between the neuro-fuzzy and the proposed algorithms, it
was decided to keep the same setup as for the neuro-fuzzy controllers.

A detailed description of the simulator and the used models within the simulator
are given in [3] [2] [4]. Because the scope of the project was emphasized on reinforcement
learning rather that on the simulator design, the conditions on the simulation environment
remain unchanged, that is, simplified models of the ATV-ISS dynamics have been used
and besides the saw-tooth disturbance motion of the ISS and measurement noise, no other
environmental disturbances are modeled. This to prevent that unnecessary energy will be
spent to other factors, than the controller itself and to guarantee that a good comparison
can be made. Other disturbances could be included after the goal of the project has been
attained.

This thesis is structured as follows:

Chapter two gives a general introduction to reinforcement learning. Important con-
cepts are explained in order to obtain a solid understanding of the subject as a basis for
subsequent chapters. An example of how to apply the algorithms introduced is given in
section (2.6). Details on the subject can be found in [15].

Chapter three explores the principle of reinforcement learning in continuous space
and time as described in [7]. The equations within this chapter are slightly modified com-
pared to the original equations, as suggested by Doya. Because they operate on the past
estimates, instead of the future ones, they perform better on the control tasks at hand.
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Chapter four explains the principles behind Kohonen’s self-organizing map (SOM)
[10] and shows how to use principal component analysis (PCA) to extend its properties so
that it can be used in the analysis of high-dimensional data spaces. The modifications as
such could be used to gain insight into the workings, learning principles and evolution of a
multi-input multi-output (MIMO) reinforcement learning controller.

Chapter five is concerned with applying a continuous time and space reinforcement
learning controller to the inverted pendulum swing-up problem. The inverted pendulum
system served as a testing platform during the development phase of the project.

Chapter six elaborates on the control tasks that comprise the rendezvous and dock-
ing mission. The reader is provided with a short overview of the typical tasks, functions
and system hierarchy of an automatic onboard control system for a rendezvous and docking
mission, without entering into the details of the actual design.

Chapter seven elaborates on the porting of the reinforcement learning controller to
the ATV system. Two identical controllers take over the role of the two fuzzy controllers,
currently used on the ATV control system, and function in parallel to control the lateral
relative port-to-port motion.
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CHAPTER 2

INTRODUCTION TO REINFORCEMENT LEARNING

This chapter is an extract from the book of Richard S. Sutton and Andrew G. Barto
on reinforcement learning. For a detailed description of the subject, the reader is advised
to read the original work [15].

2.1. The reinforcement learning problem

2.1.1. Introduction

�

-

-
agent

environment

rk

rk+1

xk+1

xk uk

Figure 2.1: The reinforcement learning framework

Reinforcement learning is an adaptation or learning method based on human and
animal learning. In this section, the full reinforcement learning problem will be introduced.
The rest of this chapter deals with solving this problem. Figure 2.1 shows the agent-
environment or the controller-plant interaction.

Reinforcement learning is the process of learning the policy through a reward func-
tion. The policy is a mapping of perceived states of the environment to actions to be taken
when in those states. The reward function is a mapping of perceived states of the environ-
ment to a single number, the reward, indicating the intrinsic desirability of that state. It
cannot be changed by the agent, i.e., the controller, but it can be used to change the policy.

Actions taken by the agent may affect not only the immediate reward, but also the
next situation, and through that, all subsequent rewards. The total amount of reward an
agent can expect to accumulate over the future starting from a particular state, is called
the value of that state. The value function is a mapping of the perceived states of the
environment to a prediction of the value of those states.

This prediction is improved upon by probing the state space for better actions, i.e.
exploration. In contrast to exploration, the agent also utilizes experience by exploitation of
actions that are already known to be satisfactory in obtaining future reward.
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The reinforcement learning method specifies how the agent changes its policy as a
result of experience, as to maximize the total reward over the long run. It uses a form
of evaluative feedback rather than instructive feedback, as used in supervised learning.
Evaluative feedback depends entirely on the action taken, thus creating need for active
exploration, for an explicit trial-and-error search of good behavior.

The objective of reinforcement learning can be summarized as to find and optimal
control strategy, the policy, that optimizes a certain control evaluation function, the value
function, thereby maximizing the total amount of reward it receives, given the current
policy. Reinforcement learning is based on the old idea that if an action if followed by a
satisfactory state of affairs or an improvement in the state of affairs, then the tendency to
reproduce that action is strengthened, i.e., reinforced.

Furthermore, time steps need not refer explicitly to fixed intervals in time, but can
refer to arbitrary successive stages of decision-making and acting. Actions can be low-level
controls, high-level decisions, even mental actions (e.g., shift focus of attention). States can
be low-level sensations or more high-level and abstract, such as symbolic descriptions of
objects, based on memory of past sensations, or subjective, a state of being. In general,
actions can be any decision we want to learn how to make and the states can be anything
we can know that might be useful for making these decisions.

The boundary between agent and environment is often not the physical boundary.
In general, anything that cannot be changed arbitrarily by the agent is considered to be
outside of it and thus part of the environment. The environment is however, not necessarily
completely unknown to the agent, e.g., how rewards are computed. The agent-environment
boundary represents the limit of the agents absolute control, not of its knowledge.

2.1.2. The Bellman optimality equation

All environments considered in this report are assumed to be Markov Decision Pro-
cesses (MDP), i.e., they have the Markov property. This property holds if all information of
the past is retained in the present state. This allows predicting the next state and expected
reward through its one-step dynamics given only the current state and action.

Episodic problems have an indefinite-horizon, in which interaction can last arbitrar-
ily long but must eventually terminate. A finite number of states and reward values enables
us to work in terms of sums and probabilities rather than integrals and probability densities.
Continuous problems have an infinite-horizon, in which interaction does not terminate. In
this chapter, the episodic problem will be studied in detail. In the next chapter, we will
study continuous problems. Figure 2.2 shows an episodic problem with absorbing state x4.
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��
��
��
��
��
��

y
- - -

r1 r2 r3 r4 = 0x0 x1 x3 x4
r5 = 0

Figure 2.2: An episodic problem with absorbing state x4

The MDP under consideration can be written as

xk+1 = f(xk,uk) + ξ (2.1)

where xk ∈ X and uk ∈ U, represent the state and action at time k respectively, given the
sets of possible states and actions. Equation (2.1) expresses the next state in terms of the
current state and action, i.e., the one-step dynamics.

The one-step dynamics can be expressed in terms of the state transition probabilities
and the reward expectations by

Pu
xx′ = Pr{xk+1 = x′|xk = x,uk = u} (2.2)

Ru
xx′ = E[rk+1|xk = x,uk = u,xk+1 = x′] (2.3)

where Pu
xx′ denotes the probability of a state transition, given a possible action, and Ru

xx′

denotes the expected reward given that particular transition.

Given the sequence of rewards rk+1, rk+2, . . ., the cumulative future reward is given
by

Rk = rk+1 + rk+2 + · · ·+ rK (2.4)

for an episodic problem, where K is the final time step. To assure finiteness in case of a
continuous problem we write Rk as

Rk = rk+1 + γrk+2 + γ2rk+3 + · · · (2.5)

=
∞∑
i=0

γirk+i+1 (2.6)

where γ is the discount factor, 0 ≤ γ ≤ 1. Because of the continuous nature of Chapter
three, the discount factor remains to be taken into account.

The value of a state V π(x) is the expected return starting from that state following
the current policy

π(x,u) = Pr{uk = u|xk = x} (2.7)

and is given by

V π(x) = Eπ{Rk|xk = x} (2.8)
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= Eπ{
∞∑
i=0

γirk+i+1|xk = x} (2.9)

= Eπ{rk+1 + γ
∞∑
i=0

γirk+i+2|xk = x} (2.10)

=
∑
u

π(x,u)
∑
x′

Pu
xx′

[
Ru

xx′ + γEπ

{ ∞∑
i=0

γirk+i+2|xk+1 = x′
}]

(2.11)

=
∑
u

π(x,u)
∑
x′

Pu
xx′
[
Ru

xx′ + γV π(x′)
]

(2.12)

V ∗(x) = max
π

V π(x) ∀x ∈ X (2.13)

Equation (2.13) is called the Bellman optimality equation for the state-value function. For
finite MDP’s, this non-linear equation has a unique solution V ∗(x) for an optimal policy π∗

that can be solved if we have complete and accurate knowledge of the environment dynamics
and enough computational resources. The optimal policy does not have to be unique.

Similarly, we can define the value of a state-action pair as the expected reward
starting from that state, taking that action and following the current policy thereafter

Qπ(x,u) = Eπ{Rk|xk = x,uk = u} (2.14)

= Eπ{
∞∑
i=0

γirk+i+1|xk = x,uk = u} (2.15)

Q∗(x,u) = max
π

Qπ(x,u) ∀x ∈ X,u ∈ U(x) (2.16)

Equation (2.16) is called the the Bellman optimality equation for the action-value function.

The Bellman optimality equation can also be written without reference to any spe-
cific policy as

V ∗(x) = max
u

Qπ
∗
(x,u) (2.17)

= max
u

Eπ∗ {Rk|xk = x,uk = u} (2.18)

= max
u∈U(x)

Eπ∗

{ ∞∑
i=0

γirk+i+1|xk = x,uk = u

}
(2.19)

= max
u∈U(x)

Eπ∗

{
rk+1 + γ

∞∑
i=0

γirk+i+2|xk = x,uk = u

}
(2.20)

= max
u∈U(x)

E {rk+1 + γV ∗(xk+1)|xk = x,uk = u} (2.21)

= max
u∈U(x)

∑
x′

Pu
xx′
[
Ru

xx′ + γV ∗(x′)
]

(2.22)

Similarly, Q∗(x,u) can be written as

Q∗(x,u) = E

{
rk+1 + γmax

u′
Q∗(xk+1,u′)|xk = x,uk = u

}
(2.23)

=
∑
x′

Pu
xx′
[
Ru

xx′ + γQ∗(x′,u′)
]

(2.24)
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A graphical representation of the Bellman optimality equation can be seen in Figure
2.3. For each state or state-action pair, the action that returns the maximum reward, is
chosen. This process is called a backup operation.f

s s s
f f f f f f

max
x

u
r

x′

f
s
f
s s s smax

u′

x′

x,u
r

Figure 2.3: Backup diagrams for V ∗(x) and Q∗(x,u) respectively

2.2. Elementary methods for episodic tasks

2.2.1. Dynamic programming

Dynamic programming (DP) provides an essential foundation for the understanding
of the methods presented in the rest of this chapter. It is however only of theoretical
importance since it requires a perfect model and massive computational resources.

The value function is computed by an iterative evaluation of equation (2.12) for a
given policy. Each iteration consists of a backup operation on each state. Each backup
updates the value of one state based on the values of all possible successor states and
their probabilities of occurring, i.e. a full backup. Starting at an arbitrarily chosen V0, the
sequence {Vk} converges to V π for k →∞.

Given the value function, an improved policy that is greedy with respect to V π can
be derived as

π′(x,u) = arg max
u

Qπ(x,u) > V π(x) ∀x ∈ X (2.25)

The interaction of these two simultaneous processes is called the generalized policy
iteration (GPI) and is depicted in Figure 2.4.

�

N

�

U

�
w >

Vk ≈ V π

π =greedy (Vk)

V ∗, π∗

Figure 2.4: Generalized policy iteration
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2.2.2. Monte Carlo

The Monte Carlo (MC) method does not assume complete knowledge of the envi-
ronment, it requires only experience in an episode-by-episode sense. Although a model is
still required, the model need only generate sample transitions, not the complete probability
distributions of all possible transitions that are required by dynamic programming methods.

Only states visited for the first time in an episode will be considered, i.e. first visit
MC. The backup operations used in MC include an entire episode, so there is no choice of
actions at each state, because they have already been taken, and the estimate for one state
does not build upon the estimate of any other state, as in DP. As the number of episodes
increases, the value function converges to V ∗.

An issue in MC is the maintaining of sufficient exploration. This can be done on-
policy or off-policy. In on-policy control the agent learns about the policy that it is currently
executing. The agent commits to always exploring and tries to find the best policy that still
explores. In off-policy control, the behavior policy generates behavior in the environment,
while the estimation policy is the policy learned about. The agent also explores, but learns
a deterministic optimal policy that may be unrelated to the policy followed.

Exploration can be done by means of the the ε-greedy action selection method. This
method exploits current knowledge to maximize the expected reward.

u∗k = arg maxu Vk−1(x), with probability 1− ε
uk 6= u∗k, otherwise

(2.26)

It would be even better to use an estimate of uncertainty of the action-value estimates to
direct and encourage exploration. This however, is beyond the scope of this thesis.

2.2.3. Temporal difference

The temporal difference (TD) method is a combination of MC and DP. It learns both
from experience like MC, and it bootstraps, i.e., estimates on the basis of other estimates,
like DP.

Using equation (2.4) and (2.8), we can write down an improved estimate of the value
function V π(xk) as

V (xk) ← V (xk) + αk[Rk − V (xk)] (2.27)

≈ V (xk) + αk[rk+1 + γV (xk+1)− V (xk)] (2.28)

where αk is the learning rate.

In effect, (2.27) is used for the MC update, whereas (2.28) is used for the TD update.
For each time step, the estimate V π is updated using the observed reward and the estimate
V (xk+1). The term between the brackets is called the temporal difference error.
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Also,

∞∑
k=1

αk =∞
∞∑
k=1

α2
k <∞ (2.29)

should hold to overcome the initial condition and assure convergence respectively. Note
that the αk = 1

k satisfies these conditions.

In tracking non-stationary problems, V ∗(x) changes over over time. Recent rewards
should therefore be accounted for more heavily, this can be done by taking a constant step-
size. As can be seen, equation (2.29) does not hold, indicating that the estimates never
completely converges but continues to vary in response to the most recently received re-
wards. Although step-size sequences that meet these conditions are often used in theoretical
work, they are seldom used in applications and empirical research.

The V (xk) can be biased by V0(x) as one way to encourage exploration, i.e. exploring
starts. Since its drive for exploration is inherently temporary, this technique is not very
suitable for tracking non-stationary problems.

Now, an algorithm for evaluating the policy can be constructed in the form of the
tabular TD(0) algorithm for estimating V π:

Initialize V (x) arbitrarily, π to the policy to be evaluated

Repeat (for each episode):

Observe x
Repeat (for each step of episode):

u← action given by π for x
Take action u; observe reward, r, and next state, x′

V (x)← V (x) + α[r + γV (x′)− V (x)]
x← x′

until x is terminal

As can be seen, the TD method does not need a model of the environment, only
experience. It will find the estimates that would be exactly correct for the maximum-likely
model of the Markov process given a limited set of episodes.

Policy improvement can be done in a on-policy or off-policy fashion, just as in MC.
The on-policy algorithm is known as Sarsa. We will continue with the off-policy method.
The off-policy TD(0) algorithm is called Q− learning:
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Initialize Q(x,u) arbitrarily

Repeat (for each episode)

Initialize x
Repeat (for each step of episode)

Choose u using policy derived from Q (e.g., ε-greedy)

Take action u, observe r, x′

Q(x,u)← Q(x,u) + α[r + γmaxu′ Q(x′,u′)−Q(x,u)]
x← x′

until x is terminal

As can be seen, it contains some form of GPI (section 2.2.1). The TD(0) and
Q− learning algorithms are one-step tabular model free TD methods as experience is stored
in a tabular fashion, and only one-step backups are used.

2.3. Eligibility traces

In this section eligibility traces are introduced, as a bridge from TD to MC. They
can be seen as a temporary record of the occurrence of an event.

The one-step backup for V π is replaced by an n-step backup. In the limit case n-step
TD backup equals the MC backup, the backup of an entire episode. The n-step return is
introduced as

R
(n)
k = rk+1 + γrk+2 + γ2rk+3 + . . .+ γn−1rk+n + γnVk(xk+n) (2.30)

The increment to Vk(xk) due to an n-step backup of xk is defined as

∆Vk(xk) = αk[R
(n)
k − Vk(xk)] (2.31)

Using the error reduction property of n-step returns

max
x
|Eπ{R(n)

k |xk = x} − V π(x)| ≤ γn max
x
|V (x)− V π(x)| (2.32)

it can be shown that n-step methods converge. Due to the inconvenience of implementation,
n-step TD is rarely used.

By averaging the n-step return this we get the forward view of the TD(λ) algorithm,
where

Rλk = (1− λ)
∞∑
n=1

λn−1R
(n)
k (2.33)

∆Vk(xk) = αk[Rλk − Vk(xk)] (2.34)
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As can be seen, for λ = 1, TD(λ) equals MC, for λ = 0 we get TD(0).

The forward view can be seen as follows. For each state visited, we look forward in
time to all the future rewards and decide how best to combine them. After looking forward
and updating one state, we move on to the next and never have to work with the preceding
state again. Future states, are viewed and processed repeatedly, once from each vantage
point preceding them.

Because the forward view is acausal, we need to develop a backward view. To this
end, eligibility traces are introduced:

ek(x) =

{
γλek−1(x) if x 6= xk
γλek−1(x) + 1 if x = xk

(2.35)

δk = rk+1 + γVk(xk+1)− Vk(xk) (2.36)

∆Vk(x) = αkδkek(x), ∀x ∈ X (2.37)

On each step, the eligibility traces for all states decay by γλ, and the eligibility trace for
the one visited state is incremented by 1. δk denotes the temporal difference error.

Again, TD(λ) learning can be done on-policy or off-policy. For off-policy TD(λ) the
forward view is equivalent to the backward view. However, for the off-policy TD(λ) type,
called Watkins’ Q(λ), the traces are cut off each time a exploratory action is taken. So the
traces for all state-action pairs are either decayed by γλ or, if an exploratory action was
taken, set to 0. The trace corresponding to the current state and action is incremented by
1. Using action-values, (2.35)-(2.37) become

ek(x,u) = Ixxk · Iuuk +

{
γλek−1(x,u) if Qk−1(xk,uk) = maxuQk−1(xk,u)
0 otherwise

(2.38)

δk = rk+1 + γmax
u′

Qk(xk+1,u′)−Qk(xk,uk) (2.39)

Qk+1(x,u) = Qk(x,u) + αkδkek(x,u) (2.40)

where Ixxk and Iuuk are identity-indicator functions, equal to 1 if x = xk or u = uk and
equal to 0 otherwise.

The Watkins’ Q(λ) algorithm is given by
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Initialize Q(x,u) arbitrarily and e(x,u) = 0 for all x,u
Repeat (for each episode)

Observer x and initialize u
Repeat (for each step of episode)

Take action u, observe r, x′

Choose u′ using policy derived from Q (e.g., ε-greedy)

u∗ ← arg maxb Q(x′,b) (if u′ ties for the max, then u∗ ← u′)
δ ← r + γQ(x′,u∗)−Q(x,u)
e(x,u)← e(x,u) + 1
For all x, u
Q(x,u)← Q(x,u) + αδe(x,u)
If u′ = u∗, then e(x,u)← γλe(x,u)

else e(x,u)← 0
x← x′; u← u′

until x is terminal

Peng’s Q(λ), which is a hybrid of Watkins’ Q(λ) and Sarsa(λ), remedies the problem
of cutting off traces, each time an exploratory action is taken, but is beyond the scope of
this thesis.

2.4. Model based reinforcement learning

By a model of the environment we mean anything that an agent can use to predict
how the environment will respond to its actions. It can be used to simulate the environment
and produce simulated experience. The process that takes a model as input and produces
or improves a policy for interacting with the modeled environment is called planning, or
indirect reinforcement learning.

When planning is done, while interacting with the environment, new information is
gained that may change the model, and thereby interact with the planning process. Within
a planning agent, there are at least two roles for real experience: it can be used to improve
the model and to directly improve the value function and the policy. The former we call
model learning, and the latter we call direct reinforcement learning.

Figure (2.5) depicts the synergy of direct and indirect reinforcement learning, which
can occur asynchronously and in parallel.

2.5. Reinforcement learning in continuous spaces

In most real world control problems, actions of a continuous nature are required in
response to continuous state measurements. It should be possible that actions vary smoothly
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Figure 2.5: Direct vs. Indirect reinforcement learning

in response to smooth changes in state. Accurate control requires that variables be quantized
finely, but as these systems fail to generalize between similar states and actions, they require
large quantities of training data. Using a courser representation of states leads to aliasing,
functionally different situations map to the same state and are thus indistinguishable.

The original neuro-fuzzy controllers deal with this problem, by maintaining a con-
ventional state-action table, where fuzzy logic is used as interpolation technique.

Other techniques rely on a adaptive quantization technique by using a self-organizing
map (SOM) [10]. These methods do not result in a continuous controller, but a controller
with a fixed number of optimal inputs and outputs representing the continuous input and
output space.

In Touzet’s Q-KOHEN algorithm [16][17], a SOM implementation of QL, the neurons
of the SOM represent state-actions pairs. The SOM takes the state-action pairs as inputs
and produces an organized or reduced dimension expression of these input states given as
vectors represented by the weights of the SOM network (Section 4.2).

Smith’s neighborhood QL uses two separate SOM instances. The quantized state
and action space represented by the SOM weights constitute a matrix-like arrangement
that forms the basis needed for tabular RL techniques, e.g. TD(λ) [13][14].

The use of the SOM reduces the algorithmic learning complexity, but introduces a
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extra quantization error that degrades the system performance and a computational over-
head. However, for the more complex problems with more state variables, the advantage of
reduction of the learning complexity becomes apparent.

A third option, is the explicit use some form of generalization, in contrast to inter-
polation or quantization. Several techniques that solve this problem exist [1][5][9]. They
combine unsupervised reinforcement learning with function approximation methods that
use supervised learning. Back propagation is used to train the function approximation net-
work that represents the value or action-value function. In model-based learning, a second
function approximation network is used to contain the system dynamics.

Frequently used function approximation methods make use of (normalized) radial
basis functions (NRBF). Doya derived a set of equations for reinforcement learning in con-
tinuous time and space [7], that make use of an NRBF network. The major drawback of an
NRBF network, is that it suffers from the curse of dimensionality, i.e. when the number of
states grows linearly, computational demands grow exponentially.

This problem can be resolved by making use of the multi-layer perceptron (MLP).
Although the MLP is relatively difficult to handle efficiently, Coulom did several successful
experiments using Doya’s equations [6]. A severe drawback of the MLP is that it suffers
from slow convergence. Its computational demands, however, are much more acceptable
and make it suitable for use in MIMO controllers.

2.6. Example: the random walk

The random walk [11], is a simple Markov Decision Process. The system contains
five states, B through F, and two terminal states, A and G. All episodes start at state C.
When an episode moves into state G, a reward of +1 occurs, all other transition rewards
are 0. Transitions to the right or the left occur with equal probability.

A←− B ←→ C ←→ D ←→ E ←→ F −→ G

This problem was analyzed using the three algorithms described in Sections 2.2 and
2.3. The following parameter settings have been used

α γ ε λ episodes

TD(0) 0.1 1 - - 1000
Q-learning 0.1 0.9 0.1 - 1000

Watkins’ Q(λ) 0.15 0.9 0.1 0.9 1000

After execution, the value function for the TD(0) algorithm is given by
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B C D E F

0.1854 0.4289 0.5814 0.6832 0.8348

which comes very close to

B C D E F
1
6

2
6

3
6

4
6

5
6

The state-action tables for the Q-learning and Watkins’Q(λ) respectively, are given
by

B C D E F

Q(1,x) 0.2724 0.7179 0.6632 0.7296 0.8143
Q(2,x) 0.7180 0.7302 0.8100 0.9000 1.0000

B C D E F

Q(1,x) 0 0.5608 0.6561 0.7290 0.8099
Q(2,x) 0.6318 0.7209 0.8100 0.9000 1.0000

where action 1 represents a step to the left, and action 2 a step to the right, given
the ε-greedy action selection.

After convergence, all episodes terminate in G, the state with the highest value.
Watkins’Q(λ) converges much quicker than the conventional Q-learning, and terminates
almost always correctly after only 250 episodes.
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CHAPTER 3

REINFORCEMENT LEARNING IN CONTINUOUS TIME AND SPACE

3.1. Introduction

The common approach to reinforcement learning has been to discretize time, space,
and action and then to apply a RL algorithm for a discrete stochastic system. A balance
between fine and course discretization then has to be found. This often results in a control
output that is not smooth and gives a poor performance, or in an explosion of the number
of states resulting in a huge memory requirement and a large number of learning trials. To
resolve this problem, a partitioning has to be found using prior knowledge.

In a continuous framework, however, a smooth control performance can be easily
obtained through the use of function approximators and their gradients. There is no need
to directly partition the state-space, the action-space and time. Although for a complete
implementation, sampling is always required.

The algorithm for nonlinear dynamical systems presented in this chapter is based
on the Hamilton-Jacobi-Bellman equation for infinite-horizon, discounted reward problems.
The estimation of the value function is formulated as the minimization of a continuous-time
form of the temporal difference error. The update method involves exponential eligibility
traces. For policy improvement we use a value-gradient based greedy-policy [7] [6].

3.2. The reinforcement learning framework

The continuous-time system dynamics are given by

ẋ(t) = f(x(t),u(t)) (3.1)

where x ∈ X ⊂ Rn and u ∈ U ⊂ Rm.

The immediate reward for the state and the action is:

r(t) = r(x(t),u(t)) (3.2)

Our goal is to find a policy

u(t) = µ(x(t)) (3.3)

that maximizes the cumulative future rewards

V µ(x(t)) =
∫ ∞
t

e−
s−t
τv r(s)ds (3.4)



REINFORCEMENT LEARNING IN CONTINUOUS TIME AND SPACE 21

The value function for the optimal policy µ∗ is given as

V ∗(x(t)) = max
u(s)∈U,t≤s<∞

[∫ ∞
t

e−
s−t
τv r(s)ds

]
(3.5)

According to [7] the condition for the optimal value function at time t is given by

1
τv
V ∗(x(t)) = max

u(t)∈U

[
r(t) +

∂V ∗(x)
∂x

f(x(t),u(t))
]

(3.6)

which is a discounted version of the Hamilton-Jacobi-Bellman (HJB) equation. The deriva-
tion of equation (3.6) can be found in Appendix A. The optimal policy is given by the action
that maximizes the right-hand side of the HJB equation, as shown in Section 2.1.2 for the
Bellman optimality equation, the discrete time and space counterpart of the HJB equation

u(t) = µ∗(x(t)) = arg max
u∈U

[
r(x(t),u(t)) +

∂V ∗(x)
∂x

f(x(t),u(t))
]

(3.7)

In [7], the performance of several methods to estimate the value function and im-
proving the policy is compared. For the current work, the best working methods were
selected. Exponential eligibility traces are used to update the estimate of the value func-
tion (Section 3.2.1). For the policy improvement a value-gradient based greedy policy will
be used (Section 3.2.2).

3.2.1. Learning the value function using exponential eligibility traces

To learn the value function in a continuous state space, a function approximation
method has to be used. To this end one has to choose from several possibilities of which
normalized radial basis function network (NRBF) (Appendix B) and the multi-layer per-
ceptron (MLP) Network are the most common ones. Normalized radial basis functions will
be used in this project, to enable us to exactly reproduce the experiments done by Doya
[7]. A comparison of these two networks can be found Appendix C.

By differentiating equation (3.4) we obtain the consistency condition

V̇ µ(x(t)) =
1
τv
V µ(x(t))− r(t) (3.8)

If the estimate of the value function equals the optimal value function, this condition
will be satisfied. If not, the estimate should be adjusted to decrease the inconsistency. We
define the continuous TD error

δv(t) = r(t)− 1
τv
V (t) + V̇ (t) (3.9)

where V̇ (t) = ∂V (x)
∂x ẋ(t).
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Now suppose an impulse of reward is given at time t = t0. Then, from equation
(3.4), the resulting value function becomes

V µ(t) =

 e−
t0−t
τv t ≤ t0

0 t > t0
(3.10)

Because the value function is linear with respect to the reward, the desired correction
of the value function for an instantaneous TD error δv(tx) is

V̂ (t) =

 δv(t0)e−
t0−t
τv t ≤ t0

0 t > t0
(3.11)

We denote wv the parameter of the function approximation network representing
the value function. Then, the update of wv,i given δv(t0) should be made as

ẇv,i(t) = ηv

∫ t0

−∞
V̂ (t)

∂V (x(t),wv)
∂wv,i

dt (3.12)

= ηvδv(t0)
∫ t0

−∞
e−

t0−t
τv

∂V (x(t),wv)
∂wv,i

dt (3.13)

where subscript i denotes the ith radial basis function (see Appendix B for details). The
learning rate for the value function is denoted by ηv.

We can consider the exponentially weighted integral of the derivatives as the eligi-
bility trace ei(t), as introduced in section (2.3), for the parameter wv,i. Then, the algorithm
to update the value function weights is derived as

ẇv,i(t) = ηvδv(t)ei(t) (3.14)

ėi(t) = −1
κ
ei(t) +

∂V (x(t),wv)
∂wv,i

(3.15)

where 0 < κ ≤ τv

3.2.2. Improving the policy

Now we consider how to improve the policy (3.3) using its associated value function
V µ. A greedy policy can be found by minimizing the right-hand side of our optimal policy
(3.7) over a continuous set of actions at every instant. When the reinforcement signal
r(x,u) is convex with respect to u and the system dynamics f (x,u) are linear with respect
to u the optimization problem (3.7) has a unique solution and we can derive a closed-form
expression of the greedy policy.

Given the reinforcement signal

r(x(t),u(t)) = g(x(t))− h(u(t)) (3.16)
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where g(x(t)) and h(u(t)) represent cost functions for the state and the action respectively,
then the condition for the greedy action (3.7) is given by

−∂h(u(t))
∂u(t)

+
∂V (x(t))
∂x(t)

∂f (x(t),u(t))
∂u(t)

= 0 (3.17)

When h(u(t)) is convex, a unique solution exists and is given by

u(t) = −∂h(u(t))
∂u(t)

−1
(
∂f (x(t),u(t))

∂u(t)

T ∂V (x(t))
∂x(t)

T
)

(3.18)

where −∂h(u(t))
∂u(t)

−1
is a monotonic function. ∂V (x(t))

∂x(t)

T
represents the steepest ascent direction

of the value function (equation (B.14) - (B.17)), which is then transformed by the transpose

model gain matrix ∂f(x,u)
∂u

T
into a direction in the action space.

A common constraint is that the amplitude of the action, such as the force or the
torque, is bounded. In equation (3.16), h(u(t)) represents a convex cost function for the
action, that can be defined as

h(u(t)) = c
∫ u

0
s−1

(
u(t)
umax

)
du (3.19)

where s(·) is a sigmoid function that saturates at s(±∞) = ±1, i.e. s(x) = 2
π arctan

(
π
2x
)

Then equation (3.18) becomes

u = umaxs

(
1
c
∂f (x(t),u)

∂u

T ∂V (x(t))
∂x(t)

T

+ σ(t)n(t)

)
(3.20)

where σ(t)n(t) represents the exploration noise as described in Section 3.4. umax

represents control signal bound.

3.2.3. Learning the system dynamics

There are specific cases in which the system dynamics are completely known, and
therefore the model gain matrix can be derived. The model dynamics of most problems
however, are not completely known, and therefore the model gain matrix has to be approx-
imated.

When we assume f̂(x(t),u(t)) the approximation of the model, the weights of the
function approximation network should be updated to decrease the inconsistency

δm(t) = f(t)− f̂(t) (3.21)

Now, if we consider the objective function

E(t) =
1
2
δm(t)2 (3.22)
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We denote wm the parameter of the function approximator representing the system
dynamics. Then, the update of wm,i given the objective function should be made as

ẇm,i(t) = −ηmδm(t)
∂δm(t)
∂wm,i

(3.23)

3.3. Discretization

In case the problem does not have continuous and differential state dynamics, the
previously derived equations will have to be discretized. To this end, we use the back-
ward Euler approximation, because it is easily implemented by hand. To update the value
function and system dynamics weights we integrate again using the backward Euler approx-
imation. The plant dynamics are integrated using the Runge-Kutta approximation.

The backward Euler approximation is defined as:

ḟ(t) =
f(t)− f(t− dt)

dt
(3.24)

Since the boundary condition for the value function is given at t → ∞ as can be
seen in equation (3.4) the best course of action is to update the past estimates of the value
function weights and the model weights. To accomplish this, some equations should be
slightly modified compared to [7].

3.3.1. Learning the value function using exponential eligibility traces

By applying (3.26), equation (3.9) is rewritten to

δv(t) = r(t)− 1
τv
V (t) + V̇ (t) (3.25)

= r(t)− 1
τv
V (t) +

V (t)− V (t− 1)
dt

(3.26)

= r(t) +
1
dt

((
1− dt

τv

)
V (x(t),wv(t− dt))− V (x(t− dt),wv(t− dt))

)
(3.27)

Equation (3.12) should be integrated to t0 − dt so that (3.14) and (3.15) are given
as

ẇv,i(t) = ηvδv(t)ei(t) (3.28)

ėi(t) = −1
κ
ei(t) +

∂V (x(t− dt),wv(t− dt))
∂wv,i

(3.29)

where 0 < κ ≤ τv

Then, we can calculate the updated weights using (3.25) as

ek(t) = ek(t− dt) + dt · ėi(t) (3.30)

wv,i(t) = wv,i(t− dt) + dt · ẇv,i(t) (3.31)
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3.3.2. Learning the system dynamics

Using the backward Euler approximation and substitution f(t) by the state ẋ(t) we
can write equation (3.19) as

δm(t) = f(t)− f̂(t) (3.32)

≈ f(t)− f̂(t− dt) (3.33)

= ẋ(t)− f̂(t− dt) (3.34)

We write equation (3.23) as

ẇm,i(t) = ηm(
x(t)− x(t− dt)

dt
− f̂(t− dt))∂f̂(t− dt)

∂wm,i
(3.35)

Then, the updated weights can be calculated as

wm,i(t) = wm,i(t− dt) + dt · ẇm,i(t) (3.36)

3.4. The exploration mechanism

In this section, we describe the exploration mechanism. It is given by the simple
differential equation:

τnṅ(t) = −n(t) + N(t) (3.37)

σ(t) = σ0 min
[
1,max

[
0,
V1 − V (t)
V1 − V0

]]
(3.38)

that represents a dynamic filter, where N(t) denotes normal Gaussian noise, V0

and V1 are the minimal and maximal levels of the expected reward that are initialized as
constants. τn is a time constant.

As for equation (3.42), it can be seen that when the controller resides in less prefer-
able states, the exploration factor is at a maximum. As performance increases, exploration
decreases.
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3.5. The algorithm

The algorithm derived can be summarized as follows.

Algorithm 3.1 - Reinforcement Learning in continuous time and space

Initialize the value function and model weights, wv and wm

Repeat for each trial

Initialize the eligibility traces, ei
Update wv and wm

δv(t) = r(t) +
1
dt

((
1− 1

dt

)
V (x(t),wv)− V (x(t− dt),wv)

)
δm(t) =

x(t)− x(t− dt)
dt

− f(x(t− dt),u(t− dt),wm)

ėi(t) = −1
κ
ei(t) +

∂V (x(t− dt),wv)
∂wv,i

ẇv,i(t) = ηvδv(t)ei(t)

ẇm,i(t) = ηmδm(t)
∂f(x(t− dt),u(t− dt),wm)

∂wm,i

ei(t) = ei(t− dt) + dt ∗ ėi(t)

wv,i(t) = wv,i(t− dt) + dt ∗ ẇv,i(t)

wm,i(t) = wm,i(t− dt) + dt ∗ ẇm,i(t)

Obtain the controller output u(t)

u = umaxs

(
1
c

∂f(x(t),u(t),wm)
∂u

T
∣∣∣∣∣
u=0

∂V (x(t),wv)
∂x(t)

T

+ σn(t)

)

s =
2
π

arctan
(
π

2
φ

)
end
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Figure 3.1: Implementation of algorithm 3.1

The implementation is depicted in Figure 3.1. The following abbreviations have
been used

TT&IR Trial Termination and Immediate Reward
FAVF Function Approximator for the Value Function
FASD Function Approximator for the System Dynamics
P Policy
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CHAPTER 4

THE SELF-ORGANISING MAP

4.1. The principle of the SOM

The self-organizing map (SOM) represents the result of a vector quantization algo-
rithm that places a number of reference vectors into a high-dimensional input data space
to approximate the data. During the learning process, the reference vectors are made
dependent on each other as if they would lie along an elastic surface. By means of the
self-organizing algorithm, this surface becomes defined as a kind of nonlinear regression of
the reference vectors through the data points. A mapping from a high-dimensional data
space onto, say, a two-dimensional lattice of points is thereby also defined. Such a mapping
can effectively be used to visualize metric ordering relations of input samples. In practice,
the mapping is obtained as an asymptotic state in the learning process.

A typical application of this kind of SOM is in the analysis of complex experimental
vectorial data such as process states, where the data elements may even be related to
each other in a highly nonlinear fashion. The process in which the SOM is formed is an
unsupervised learning process. Like any unsupervised learning classification method, it may
also be used to find clusters in the input data, and to identify an unknown data vector with
one of the clusters. On the other hand, if the data are a priori known to fall in a finite
number of classes, identification of an unknown data vector would optimally be done by
some supervised learning algorithm, say, the learning vector quantization (LVQ), which is
related to the SOM.

4.2. The mathematics of the SOM

There exist many versions of the SOM. The basic philosophy, however, is very
simple and already effective as such. The SOM here defines a mapping from the input
space Rn onto a regular two-dimensional array of nodes. With every node i, a reference
vector mi ∈ Rn is associated. The lattice type of the array can be defined as rectangular
or hexagonal, the latter is more effective for visual display. An input vector x is compared
with the mi, and the best match is defined as a response: the input is thus mapped onto
this location. One might say that the SOM is a nonlinear projection of the probability
density function of the high-dimensional input data onto the two-dimensional display.
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Let

x ∈ Rn, mi ∈ Rn (4.1)

be the input data vector and the ith reference vector, respectively. The smallest Euclidean
distance defines the winner node mc

‖x−mc‖ = min
i
‖x−mi‖ (4.2)

Useful values of mi can be found as the convergence limits of the following regression,
whereby the initial values mi(0) can be arbitrary

mi(k + 1) = mi(k) + hci(k)[x(k)−mi(k)] (4.3)

where k is the discrete-time coordinate and hci(k) is the so-called neighborhood kernel. It
is a function defined over the lattice points and is usually defined as

hci(k) = h (‖rc − ri‖, k) (4.4)

where rc ∈ R2 and ri ∈ R2 are the position vectors of nodes c and i, representing their
position on the lattice respectively. During learning, those nodes that are topographically
close in the array up to a certain distance will activate each other to learn from the same
input. With increasing ‖rc − ri‖, hci → 0. The average width and form of hci defines the
stiffness of the elastic surface.

Possible definitions of hci include the bubble kernel and the gaussian kernel. The
bubble kernel refers to a set of array points around node c and is defined as

hci(k) =

{
α(k) if ‖rc − ri‖ < ε(k)
0 otherwise

(4.5)

where learning rate α(k), 0 < α(k) ≤ 1 is a monotonically decreasing function of time and
ε(k) is the kernel distance.

The gaussian kernel is defined as

hci(k) = α(k) exp

(
−‖rc − ri‖2

2σ2(k)

)
(4.6)
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where α(k), 0 < α(k) ≤ 1 is the learning rate and σ(k) the width of the kernel. Both
functions are monotonically decreasing functions of time.

The SOM introduces a quantization error. The minization of the average quatization
error

1
m

m∑
i=1

‖xi −mc‖ (4.7)

is often used as a performance index, where N is the number of input data vectors. This
performance index can be minimized by trying several different mi(0).

As hci(k) is shifted toward hci = δci, where δci is the Kronecker delta, the quantiza-
tion error would become minimal, but there wouldn’t be self-organizing properties either.
The mutual interaction between the lattice nodes through the neighborhood kernel is what
makes the nodes group and organize themselves.

Furthermore, the SOM can be calibrated by manually selected data sets. It can
be trained by reiteration on a limited data set and the importance of a particular data
vector can be enhanced by increasing the neighborhood kernel locally. This way, one could
emphasize particular area’s of interest in the resulting map, or incorporate prior knowledge
of the input data vectors.

4.3. Topology preserving projections

When dealing with RL controllers in continuous space and time, some form of func-
tion approximation networks are used to represent the knowledge acquired during learning.
In extending these controllers to the MIMO case, these function approximation networks
become high-dimensional functions, that are very difficult to interpret properly.

In order to visualize such a high-dimensional data space while retaining as much
information as possible, a suitable projection onto a two or three dimensional space has to
be found. To this end, an algorithm was developed that decomposes the SOM weights, the
generalization of all data points, using a singular value decomposition. The data points are
projected onto a suitable hyperplane that is the span of the principal components of the
decomposition, then the projection is mapped onto the visualization plane. This algorithm
can be easily extended to a projection in three dimensional space.

Using a singular value decomposition, the SOM weights are written as

M = UΣVT (4.8)

where M,Σ ∈ Rm×n, U ∈ Rm×m, and V ∈ Rn×n, being m the number of SOM neurons,
and n the dimension of the original data space, where the diagonal elements of Σ
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σ1 ≥ σ2 ≥ · · · ≥ σr > 0 (4.9)

represent the first r singular values of the rank r matrix M.

The principal component vectors v1, v2, ⊂ V are non unique orthonormal vectors
that represent the unit directions in which the data variance is greatest. By selecting these
vectors as a basis that spans a hyperplane in Rn onto which the projection of the data points
is done, maximum topological information entropy is contained within this projection. The
projection itself is done using the orthogonal projection theorem

php =
p · v1

v1 · v1
v1 +

p · v2

v2 · v2
v2 (4.10)

where subscript hp denotes the hyperplane. The SOM weights can be projected onto the
hyperplane using this theorem too.

The projected data points are mapped back onto the visualization plane using

pvp = phpV−1 (4.11)

where subscript vp denotes the visualization plane. All elements of pvp are zero, except for
the first two. They can therefore be disregarded. This leaves us with a set of data points
in R2.
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The complete algorithm is given by

UΣVT = M ; singular value decomposition

ob =
[

v1 v2

]
for i = 1 to m

mhp,i = proj(mi,ob) ; topology preserving orthogonal projection

mvp,i = mhp,iV−1 ; map hyperplane onto visualization plane

end

for i = 1 to n

php,i = proj(pi,ob)
pvp,i = php,iV−1

end

Furthermore, the total percentage of variance retained in the projection is given by
the following formula

pv =
σ2

1∑r σ2
j

+
σ2

2∑r σ2
j

(4.12)

Figure 4.1: Visualization of a data and weight space in R10

Figure 4.1 shows the projection of four clusters in a ten-dimensional space, using
four neurons in a hexagonal type lattice. During training, the reference vectors move toward
the data vectors. As can be seen, the SOM is useful as an indication of whether possible
clusters exist and where they are located. Visual verification of the clusters is made possible
by the projection.
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This would thus be a very interesting tool for dynamically clustering a given high-
dimensional state space. The centers of a normalized radial basis function network could be
placed very efficiently as a part of the reinforcement learning algorithm, while retaining the
possibility of extracting valuable visual information and online monitoring of the algorithm
during operation.



34 THE SELF-ORGANISING MAP

4.4. The projection of the value function

To obtain maximum visual information from the high-dimensional value function,
the value function can be projected onto the hyperplane. The projection is done using the
same orthonormal vectors that we used in projecting the weights, the boundaries being
determined by the mapped visualization plane.

This is done by the following algorithm

for each xvp ∈ Xvp ; Xvp ⊂ R2

xhp = xvp,1v1 + xvp,2v2 ; vi ∈ Vn×n

Vhp(xvp) = V (xhp)
end

where subscript vp denotes the visualization plane, subscript hp denotes the hyperplane,
and n denotes the dimension of the original data space.

In case of the projection a value function, the projection will be independent of u.
This method is easily extended to the projection of a action-value function. Vector p will
then of the form

pi =


xi
ui

Q(xi,ui)

 (4.13)

where the inclusion of Q(xi,ui) is optional. When the SOM is trained with the inclusion
of the value function or the action-value function, it is possible to show the projected value
or action-value function in a quantized manner, by assigning a color index to the winner
nodes.

Figures 4.2 and 4.3 are projections of a three-dimensional state-value space, using
two neurons. With the inclusion of V (xi), it is also assured that all elements of the original
data space, as well as the value function itself, are projected with maximum preservation
of visual information.

Figure 4.4 is a projection of the two-dimensional state space only. The SOM was
trained using eight neurons. The value function is projected on the background, and matches
the projected state space very closely.

Figure 4.5 is an attempt to visualize the state-action space, using just the value
function. One would probably obtain better results if this action-value function were de-
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Figure 4.2: Quantized visualization of a state-value and weight space in R3

Figure 4.3: Visualization of a state-value and weight space in R3

Figure 4.4: Visualization of the state and weight space in R2



36 THE SELF-ORGANISING MAP

Figure 4.5: Visualization of the state-action space in R3

pendent on u. The addition of this extra dimension now only introduces uncertainty in the
visualization process, still, 96.6% of the visual information is contained within this figure.

This projection mechanism has a significant drawback. Although projected with
maximum information entropy, the accuracy of the projected data is limited and does not
coincide with projection of the value function onto the hyperplane. This means that an
information shift can occur in the visualization plane, as can be seen in the lower right
corner of Figure 4.2. The switching of neurons does not occur at the same visualized
position. A possible solution to this problem involves interpolating the value function
between the transformed data points using splines.

Furthermore, the following inequality holds for all projected data

‖pi − php,i‖ < ‖pi − vj‖ (4.14)

for all vj ∈ Vn×2 distinct from php,i, which is the best approximation to pi by
elements of Vn×2. In other words, this projection mechanism is the best one possible using
orthogonal projections.

In conclusion, the kind of visualization explained in this section, could well be done
without the use of a SOM. One would then do the principle component analysis (PCA) on
the samples instead of the SOM weights. Here too, the projected value function could be
included in the PCA, to emphasize the visualization of the variance of the value function
itself.

However, if we want to include the dynamic clustering as explained at the end of
Section 4.3, the SOM is a necessary component in the visualization process. One could
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then see the centers of the radial basis functions moving to their respected positions during
operation, and see the formation of the value function at the same time.

Due to insufficient data resources of higher dimensions, further research will be
necessary when an appropriate MIMO controller becomes available.
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CHAPTER 5

THE INVERTED PENDULUM SWING-UP EXPERIMENT

5.1. The inverted pendulum swing-up

Figure 5.1: Physical Configuration of the Swingup Pendulum Experiment

The physical configuration of the experiment is shown in Figure 5.1, where a mass
m is connected to a rigid link of length l. The link is mounted by a joint, that is actuated
by a motor with limited torque. Initially, the mass rests in its stable equilibrium, at the
bottom position. The goal of the experiment is to get the controller to balance the mass at
the top position, starting in the lower equilibrium.

Controlling this one degree of freedom system is non-trivial if the maximal output
torque umax is smaller than the maximal load torque mgl. The controller has to swing the
pendulum several times to build up momentum and also has to decelerate the pendulum
early enough to prevent the pendulum from falling over. Also, there exists no closed-form
analytical solution for the optimal solution and complex numerical methods are required to
compute it [7].

The nonlinear dynamics are given by:

ẋ = f(x(t),u(t)) (5.1)

or [
θ̇

ω̇

]
=

[
ω

1
ml2

(−µω +mgl sin θ + u)

]
(5.2)

where m = l = 1, g = 9.8, µ = 0.01, and umax = 5.0.

For a two dimensional state and a one dimensional action, as in equation (5.2),
the value function and the system dynamics are represented by a function approximation
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network with a two and three dimensional input and a one and two dimensional output,
respectively. Normalized radial basis functions are used as the function approximation
network (Appendix B).

The value function is written as

V (x(t)) =
Iv∑
i=1

wv,iΦ̃v,i(x(t)) (5.3)

where Iv = 225 and represents the 15x15 basis functions of the state space. The value
function weights wv,i are initialized as zero. The system dynamics are written as

f(x(t),u(t)) =

[
f1(x(t),u(t))
f2(x(t),u(t))

]
(5.4)

fj(x(t),u(t)) =
Im∑
i=1

wmj ,iΦ̃m,i(x(t),u(t)) (5.5)

where Im = 450 and represents the 15x15x2 basis functions of the state-action space. The
system dynamics weights are randomly initialized. Both the value function and the system
dynamics basis functions are equally distributed on a rectangular grid. Several simplifica-
tions can be made for a rectangular grid. These are described in Section 5.3.

Despite the random initialization of the system dynamics weights, the experiment
will have to be deterministic and repeatable. This can be done by taking a constant random
seed. To widen our scope, the constant seed is replaced by a time-dependent random seed.
Experiments prove that a non-deterministic initialization of the model weights and controller
state does not give any problems. The controller handles all cases as it should.

There are three ways of initializing the initial state of the simulated system. First is
the deterministic initialization in which the pendulum is returned to its lower equilibrium
each time. Second, we could start the simulation at a random angle and zero angular
velocity. Third, we could initialize the state in a natural way, by setting the initial state
the first way before our simulation begins while subsequent trials are started where the
previous trial ended unless the pendulum is over-rotated, when one should delay the next
trial until the pendulum has slowed down enough. The third way would be useful when the
controller is trained on a the physical setup. We use the first way and set the initial state
to a constant value of

x(0) =

[
θ

ω

]
=

[
π

0

]

To get our controller working, the exploration factor is required. In the current
experiment, the exploration mechanism as described in Section 3.3.3 is used, with the
parameters τn = 0.5, σ0 = 0.5.
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The reward signal is given by

r(t) = cos(θ) (5.6)

so that the upper equilibrium has positive reward, while the lower equilibrium has negative
reward.

Each trial lasts for 20 seconds unless |θ| > 5π upon which a reward r (t) = −1 is
given for one second. A trial is regarded successful when tup > 10s, where the performance
measure tup is increased while |θ| < π

4 . The pendulum being balanced within 45 degrees
from the upper position is considered acceptable in this experiment.

Finding the optimal values of the simulation parameters would require solving the
reinforcement learning equations. The values of the simulation parameters used in this
experiment are obtained by trial and error, and are given by τv = 1.0, κ = 0.1, c = 0.1,
ηv = 50, ηm = 500, dt = 0.02. The experimental results are very sensitive to deviations from
these values, and can cause instability of the algorithm, especially concerning the sample
rate.

5.2. Experimental results

Figure 5.2 shows the value function obtained from simulation. The initial condition
is located in the middle of the figure. Low values of the value function are represented by
black, while places of high value are represented by dark grey. When we follow the black
line, we see the pendulum building up momentum before it swings to the dark grey area.
The pendulum is then being balanced at θ = 0.

Figure 5.2: A test trial and the value function for the pendulum swing-up task.

Figure 5.3 shows the value function in perspective. Figure 5.3 shows the time in the
up-position −π

4 < θ < π
4 . Figure 5.4 shows a test trial, where ηv and ηm are set to zero.
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The controller in no longer learning. Figure 5.5 shows the control torque applied to the
system during the test trial.

Figure 5.3: The time in up-position
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Figure 5.4: A typical test trial

Figure 5.5: The control torque

As can be seen in Figure 5.4, the pendulum is not being balanced at θ = 0 exactly.
The angle is a little below zero. Therefore, the control torque in Figure 5.5 is stays at values
greater than zero. The reason this occurs is that we have defined a reinforcement signal
that is nearly equal for all angles θ in the vicinity of θ = 0. We would have to choose a
different reinforcement signal in order to make the angle exactly zero.
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5.3. Rectangular grid simplifications

x1

x2

c1,1 c2,1

c2,2

c1,2

��
��

��
��

Figure 5.6: Rectangular grid of radial basis functions

Suppose the RBF’s are arranged in a rectangular grid. To describe these basis
functions four weights and four centers are needed. The centers of the radial basis functions
are defined as

ci =

[
ci,1

ci,2

]
(5.7)

for i ∈ [1, 4]. So we have eight center coordinates in total, for a two-dimensional state-space.

As can be seen from Figure 5.6, c3 and c4 can be written in terms of c1 and c2

and only four center coordinates are needed for the computations. Now, by substitution of
equation (B.7), we can write equation (B.10) as

Φv,i(rv,i) = exp

− 2∑
j=1

(xj − ci,j)2

2σ2
j

 (5.8)

=
2∏
j=2

exp

(
−(xj − ci,j)2

2σ2
j

)
(5.9)

In case of n2 basis functions, using equation (5.8) we will need to evaluate n2 ex-
ponentials. On the other hand, using equation (5.9) we will only need to evaluate 2n
exponentials. This is very beneficial for the calculation and memory requirements of both
the value function and the system dynamics. Since the basis function representing the sys-
tem dynamics have the same centers and standard deviations for the first two dimensions,
i.e. the system states, there is no need to compute these all over. Equations (5.10-5.11)
show us we only have to compute the remaining dimensions of the control output.

Φm,i(rm,i) = exp

(
−(u− ci,3)2

2σ2
3

)
2∏
j=2

exp

(
−(xj − ci,j)2

2σ2
j

)
(5.10)

= exp

(
−(u− ci,3)2

2σ2
3

)
Φv,i(rv,i) (5.11)
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By these simplifications, all computational redundancy is eliminated. When we use
a multi-layer perceptron, or other techniques such as dynamic clustering of the radial basis
functions, this redundancy does no longer exists. This has to be accounted for in finding a
optimal method of function approximation.

5.4. An algorithm for circular state-spaces

0−π π
c1,1 c2,1 c3,1 c4,1 c5,1

x1

Figure 5.7: Circular state-space for I = 5 radial basis functions

Because we are working with a cylindrical state-space, a couple of serious problems
arise. For given x1 ∈ [−π, π) and ci,1 ∈ [−π, π) it is seen that

‖x1 − ci,1‖ ∈ [0, 2π) (5.12)

To clarify the problem, we consider the following cases

1) x1 < 0 ∧ ci,1 < 0
2) x1 < 0 ∧ ci,1 > 0
3) x1 > 0 ∧ ci,1 < 0
4) x1 > 0 ∧ ci,1 > 0

From these cases, the following table is constructed

x1 − ci,1 ∈ ‖x1 − ci,1‖ ∈ 2(x1 − ci,1 > 0)− 1 ‖x1 − ci,1‖ > 2π − ‖x1 − ci,1‖
1) [−π, π) [0, π) ±1 false

2) [−2π, 0) [0, 2π) −1 true/false

3) [0, 2π) [0, 2π) +1 true/false

4) [−π, π) [0, π) ±1 false

Table 5.1: Data needed for deriving cylindrical state-space algorithm

As can be seen from the last column of Table 5.1, possible overflows occur in case
(2) and (3). That is, the distance ‖x1− ci,1‖ is not the shortest distance. When calculating
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Φi,1 with the shortest distance instead, the partial derivative Φ′i,1 changes accordingly. The
mapping of x1 onto Φi,1 and Φ′i,1 as in equation (B.7) and (B.17) thus becomes non-trivial.

Depending on whether an overflow occurred, and whether it was on the right or on
the left of the center, the sign of the derivative can be determined. The algorithm thus
becomes

foreach i ∈ [1..I]
dx = x1 − ci,1
absdx = ‖dx‖
signdx = 2(dx > 0)− 1 ; are we on the right?

of = 2 ∗ (dxabs > 2π − dxabs)− 1 ; was there an overflow?

absdx = min(absdx, 2π − absdx)
Φi,1 = exp(−absdx2

σ2
1

)

Φ′i,1 = −signdx ∗ of ∗ dx
σ2

1
∗ Φi,1

end
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CHAPTER 6

THE ONBOARD RENDEZVOUS CONTROL SYSTEM

6.1. Tasks and functions

The intention of this chapter is to provide the reader with a short overview of the
typical tasks, functions and system hierarchy of an automatic onboard control system for
a rendezvous and docking mission, without entering into details of the actual design. For
more information on the actual docking process, refer to [8]. The figures in this chapter are
mostly copied from [3].

Figure 6.1: Hierarchy of the control system for RVD

During the rendezvous and docking (RVD) process, the automatic onboard system
has to fulfill the following tasks:

• preparation and execution of manoeuvres and continuous control of trajectory and
attitude (guidance, navigation and control (GNC))

• sequencing of phases, GNC modes or manoeuvres, and scheduling of equipment for
such modes (mission and vehicle management (MVM))

• detection and recovery from system and equipment failures and from critical state
vector deviations (failure detection, isolation and recovery (FDIR))
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• data exchange concerning the rendezvous process and the onboard control system
with the ground control center and the target space station

To fulfill all the above listed tasks, the onboard control system for RVD will have
to be designed according to a hierarchical structure. The typical hierarchy of the overall
control setup for automatic rendezvous is shown in Figure 6.1. This simplified figure shows
only the levels of authority, not the actual functional relations within such a system. For
instance, there will be the need to have failure detection functions at all levels, including
the level of the GNC software functions and in the sensor and actuator hardware.

6.2. Guidance, navigation and control

The control loops for attitude and trajectory control are contained within the guid-
ance, navigation and control (GNC) functionality, that is implemented in software in the
onboard computer. This includes the truster management system (TMS). A block diagram
of the control loop is shown in Figure 6.2.

Figure 6.2: GNC functions

Depending on the distance from the target vehicle, various translation and attitude
manoeuvres have to be controlled. This requires a reconfiguration of the control loops. The
proper algorithm and parameters, i.e., the GNC mode, have to be selected for each phase
of the approach.

As long as the distance between the two vehicles is large enough, each degree of
freedom (DOF) of rotation and translation may be controller independently by a SISO
controller. During the last part of the approach, when the docking mechanism of the chaser
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vehicle has to be aligned with the docking port of the target vehicle, all motions are coupled
(see Section 6.3). In this case, a MIMO control system will have advantages.

6.2.1. The navigation function

The task of the navigation function is to provide the controller and the guidance
function with the necessary information on the present state of the vehicle. For each navi-
gation mode, the navigation function consists of a Kalman filter, which processes the infor-
mation of attitude and trajectory sensors and propagates the vehicle state vector by using
knowledge of the dynamic behavior and information on the actual thrust commands. Its
purpose is to obtain an estimation of the state with reduced noise errors. Such a filter will
also be helpful in cases where the sensor information is only intermittently available.

6.2.2. The guidance function

The guidance function defines the set values for nominal evolution of the spacecraft
state, i.e. the references for the control of position, velocities, attitude and angular rates
at each point in time. For example, the propagation of the instantaneous position of the
center of mass in the vehicle body frame according to the propellant consumption during the
mission. These set values will then be compared with the estimated actual values, provided
by the navigation function, enabling the control function to prepare the control commands.

6.2.3. The control function

The task of the control function is to provide the force and torque commands nec-
essary to correct the deviations of the actual attitude and position from the nominal ones
and to ensure stability of the vehicle. While the guidance function provides the nominal or
reference state, and the navigation function estimates the actual state, from the difference
of the two states the control function produces actuation commands to compensate for the
effects of disturbances and errors.

6.2.4. The thruster management system

The truster management function transforms the torque and force commands into
’on/off’ commands for the individual thrusters. This functions is of particular importance
for vehicles which have their thrusters located in an unbalanced arrangement w.r.t. the
center of mass. In such cases each translation force and each rotation torque has to be
produced by a combination of various thrusters with burns of different duration.

6.3. The spacecraft dynamics, kinematics and environment

The plant in Figure 6.2 is the block representing the six degrees of freedom motion
dynamics of the spacecraft, i.e. the dynamics of translational motion (position dynam-
ics) and rotational motion (attitude dynamics). The coupling between translational and
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rotational motion is due to the orbital rotation (small) and the translational components
r sin(α) that results from a rotation angle α at a distance r from the center of rotation.
The latter effect plays a role when the vehicle is controlled w.r.t. a frame which does not
originate in its COM. This is the case when both lateral and rotational alignment with
the target docking axis has to be achieved prior to contact. In all other cases, coupling of
translational and rotational motions is rather small, and can usually be neglected.

6.4. The proximity operations

Figure 6.3: Approach strategy to docking port

Figure 6.3 illustrates the approach strategy of the European ATV to the ISS. From
the point labeled (S2), approach into the approach ellipsoid (AE) can commence only after
permission from the ISS. Under RGPS navigation, a radial boost transfer manoeuvre leads
the ATV into the AE to a point (S3) where acquisition of the target reflectors by the optical
rendezvous sensor can take place.

Under optical RVS navigation, the straight line forced motion from the point labeled
(S3) to the point labeled (S4), leads to the docking port. The major disadvantage of the
straight line forced motion approach for closing is the high propellant consumption, however,
approach recovery is easier than for tangential transfer. Also, it is more suitable for entry
of the approach corridor, a narrow cone shaped corridor of ± 10 degrees, defined by the
target station.

The velocity profile along the approach line consists of several distinct phases of
acceleration, deceleration and constant velocity, before contact with the target interfaces
is established. The results presented in the next chapter do only partly represent the real
scenario. During simulation, the chaser is held at a fixed distance of 40 meters with a
constant accuracy requirement in position and velocity. A realistic scenario would include
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an increase in accuracy requirements in position and velocity, due to the approach corridor
and the angular operating range of the optical sensors.

The sensors used during this phase are a scanning laser range finder (< 500 m),
and a camera (< 20 m). These sensors measure the relative position and relative attitude.
The required velocity and angular rate measurements are obtained by differentiation w.r.t.
time, of the relative position and relative attitude measurements.

6.5. Controller design for the proximity operations

In the last part of the approach, an important requirement in the controller design
is that the chaser must be able to follow the motion of the docking port of the target. In
the case of target thruster firings and of motions due to structural flexibility of the target
during the final approach of the chaser, the frequency content of these motions may lead to
higher bandwidth requirements than in the other approach phases.

Although steady state errors of position and angular alignment may fit into the
reception range of the docking mechanism, transient errors may be large. The transient
response of the controller must be such that, the sum of the instantaneous values of lateral
position and angular misalignment between the docking interfaces of the chaser and target
will be smaller than the reception range, denoted as the maximum distance in Figure 6.4.
Generally, in the case of docking, the keep the impact low, contact and lateral velocities
and angular rates should be as low as possible.

Figure 6.4: Motion of target and chaser at docking

Both the relative lateral position and the relative attitude have to be controlled
simultaneously to achieve full translational and rotational alignment of the docking inter-
faces. This needs, in addition to the lateral position, an onboard estimation of the relative
orientation of the docking axis of chaser and target. A consequence of this scheme is that
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rotational and translational motions are now coupled, which has important consequences
for the controller, as it requires more advanced controller design techniques.

Figure 6.5: Schematic overview port-to-port docking problem
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A schematic overview of the relative port-to-port docking problem is given in Figure
6.5. In order to avoid problems because of the coupling between the relative port-to-port
translational and rotational motions, the concept of R-control is introduced [3], it uses
the distance between the chaser’s COM and a point at which the chaser’s COM would be
in case of perfect docking, as depicted in Figure 6.6. This concept decouples the relative
translational and rotational motions, thereby making it possible to use the same controllers
in the RVS phase as in the GPS phase.

Figure 6.6: R-transform

When the relative translational and rotational motion are decoupled, it is possible to
design an array of six independent controllers for the resulting six degrees of freedom. The
array consists of four PD controllers and two controllers based on reinforcement learning
that control the lateral port-to-port positions and velocities, that is, the position control in
the plane perpendicular to the docking axis.

6.6. ISS disturbance motion modeling

The structural flexibility of the target, is modeled as a periodic high frequency
disturbance angular motion round the COM. Since the docking port is at a certain distance
from the COM, these angular motions translate into lateral (saw-tooth) motions of the
docking port, represented by the solid line in Figure 6.4. The rounded-off corners are due
to the available thrust level and the inertia of the target spacecraft.

Within the simulator, the saw-tooth disturbance is represented by a Fourier series.
In the current experiment, the first ten harmonics are used. Further disturbances on the
ATV and the ISS, as described in Section 1.2, are not taken into account. Because the
scope of the project was emphasized on making an evaluation of the control techniques, the
same conditions hold as in the original experiments.
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CHAPTER 7

EXPERIMENTAL RESULTS

The chaser is being held at a fixed relative position, 40m behind the ISS. The array
of six independent controllers control the lateral port-to-port positions and velocities, that
is, the control of the position and the velocity in the plane perpendicular to the docking
axis. The array consists of four PD controllers and two controllers based on reinforcement
learning.

The reinforcement learning controllers represent a non-linear mapping of error and
error rate to the controller output

u(t) = f(ertrans(t), ėrtrans(t), ep2p(t), ėp2p(t)) (7.1)

where

ertrans(t) = xgui(t)−R(xnav)(t) (7.2)

represents the error that is controlled to zero, R(·) denotes the R-transform (Section 6.5),
and

ep2p(t) = xgui(t)− xnav(t) (7.3)

represents the port-to-port error that forms the input of the reinforcement signal. Since the
chaser is being held at a constant position, xgui(t) can be considered constant.

The goal of the controllers is to keep the both errors and error-rates, within certain
predefined boundaries, given limited thrust capabilities. One controller for each direction
in the plane perpendicular to the docking axis. Usually, these boundaries are given by the
approach corridor and the reception range of the target vehicle.

The signal constraints are given by ertrans(t), ep2p(t) < 0.3m, ėrtrans(t), ėp2p(t) <
0.03m/s and umax = 150N .

7.1. Results of the original controllers

First of all, the simulation results obtained with the use of the the two original
reinforcement learning controllers will be given.

The original controllers used to control the lateral relative port-to-port motion were
implemented as n-step Temporal Difference controllers. Function approximation was done
using by means of fuzzy logic. The definition of fuzzy regions for the state-action space is
a logical extension of the ’crisp’ cells in the lookup-table. An important advantage of such
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fuzzy systems, is that the results can be interpreted in terms of if-then rules and possibly
validated with expert knowledge.

The controllers were initialized as linear PD controllers of the same configuration as
used for all other DOF’s. A simulation lasts for 10000 s. These are the result to which we
compare the results obtained using the techniques explained in this thesis. Only the last
400 s are depicted below.

Figure 7.1: Translational position errors (original experiment)

Figure 7.2: Translational velocity errors (original experiment)

Figure 7.1 shows the control errors, ereal(t), enav(t) and ertrans(t) for both axes.
Figure 7.2 shows the control error velocities ėreal(t), ėnav(t) and ėrtrans(t) for both axes.
Figure 7.3 shows the control torques generated by the controllers. The controller is perform-
ing well within the given constraints, while following the oscillation caused by the flexibility
of the target.
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Figure 7.3: Control forces (original experiment)

7.2. Results of the continuous space and time reinforcement learning controllers

The representation of the value function and the system dynamics conform with the
definition in Section 5.1. In transferring the controller to the parallel configuration needed
for the control of the lateral relative positions, some minor modifications to the controller
will take care of the process differences such as immediate reward, trial termination, signal
bounds on the process state and radial basis function handling.

The signal limits are the same as in the original experiment and are given by
ertrans(t), ep2p(t) < 0.3m and ėrtrans(t), ėp2p(t) < 0.03m/s. The simulation parameters re-
main unchanged with respect to the pendulum swing-up, that is τv = 1.0, κ = 0.1, c = 0.1,
ηv = 50, ηm = 500, dt = 0.02. A trial is considered successful when it remains at a fixed
distance of 40 meters for 400s without exceeding the signal bounds.

The reward construction used is this chapter is based on the following assumption.
Through the definition of the reward function, the controller will try to minimize the control
error and control error velocities. This means, that if we depict our state space we want the
controller to be in the second and fourth quadrant. When the error is positive, the error
rate should be negative. When the error is negative, the error rate should be positive.

Experiments were done using three different reward functions:

1. The original implementation of the reward function was linear (Figure 7.4). It is
described by

r(ep2p, ėp2p) = − 1
0.05
|ep2p + 10 ∗ ėp2p| (7.4)

As can be seen, the controller is forced to stay in the second or fourth quadrant.
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Figure 7.4: reward function in the linear regime

Furthermore, there is no stimulant for the controller to go to the origin of the state
space. When a trial terminates prematurely, that is if one of the states exceeds the
signal bounds, a reward of -15 is given.

2. The origin attraction is resolved by the following function

Figure 7.5: Reward function based on saddle-point

r(ep2p, ėp2p) = −42 ∗ (e2
p2p + ep2p ∗ 10 ∗ ėp2p + 100 ∗ ė2

p2p); (7.5)

As can be seen, the controller is still forced to the second and fourth quadrant, but at
the same time, the origin is given priority. On premature trial termination, a reward
of r = −25 is given.
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3. The origin can be further accented by square-rooting the saddle-point function

r(ep2p, ėp2p) = −75 ∗
√
e2
p2p + ep2p ∗ 15 ∗ ėp2p + 100 ∗ ė2

p2p; (7.6)

Using this reward function, however, did not make the controller perform better.

Figure 7.6: Value function and last successful trial for y-axis controller

Figure 7.7: Value function for z-axis controller

First of all, the algorithm clearly succeeds in fulfilling the objective. The chaser
matches the disturbance of the target docking port within the given signal bounds, and
therefore within the reception range of the target. It is however, not as stable as in the
pendulum swing-up experiment.

Figure 7.6 - 7.11 show the results obtained during simulation using the continuous
time and space reinforcement learning controllers. When we compare Figures 7.6 and 7.7 to
the value function obtained in the pendulum swing-up experiment, displays a vastly more
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Figure 7.8: Time until trial termination

Figure 7.9: Translational position errors

complex scene, from which less information can be extracted than from the value function
of the pendulum swing-up experiment. Also, Figures 7.6 and 7.7 show a much more erratic
trial than in the pendulum swing-up experiment. Since the ATV-ISS docking mission is
more complex situation, this is not completely unexpected.

Compared to the results of the original experiment, Figures 7.9 and 7.10 show a
much bigger error and error rate. Possible causes include the difference in initialization.
While the original controller was initialized as a linear PD controller, the current controller
is initialized randomly (Section 7.3). This has a certain influence on the convergence of
the algorithm. Another reason the performance is worse, is the information content of the
function approximation method, as will be explained in the following section.

The control forces shown in Figure 7.11 are smoother and less noisy compared to
Figure 7.3. This seems to be the case for the error and error rate figure too, and could
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Figure 7.10: Translational velocity errors

Figure 7.11: Control Forces

indicate a difference in exploration.

In conclusion, due to many factors, the algorithms remain difficult to compare.
Although the mathematics of the current algorithm are more advanced, this does not show
in the results.

7.3. Improving controller performance

In order to improve the controller’s performance, there are a number of options. A
discussion of some simple tests and some more elaborate methods will follow.

First, simply increasing the number of trials had no observable influence on the
accuracy of the controller. After some time of training, the controller does not improve any
more.
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Second, the gradually reducing the exploration noise has been tried. The total
amount of elapsed time, or number of trial has been taken into account linearly, to ensure
that there is no significant exploration at the end of the experiment. There was indeed a
definite improvement in the stability of the trail duration.

Third, dynamically changing the maximum and minimum levels of expected reward
V0,y, V1,y, V0,z, and V1,z (equation (3.42)) after each trial seems to deteriorate the learning
performance. The accuracy is improved, but overall stability is degraded.

Fourth, to further improve performance, the policy could be slightly modified by
removing the arctan. Instead, actions could be rewarded or punished through the reward
function. This has not been implemented yet.

And for the more elaborate methods:

The information a function approximation method of the kind used in this experi-
ment, that is, the use of normalized radial basis functions, is limited for a number of reasons.
First, the general amount of information the function approximation method can hold, is
limited per definition. Second, the rectangular distribution of the radial basis functions, is
far from optimal. In function approximation, some regions are more important than others
in their representation. Clustering schemes such as the self-organizing map could be used
to improve on this second limitation, however, the simplifications that can be made using
a rectangular grid (Section 5.3) will be lost.

In the current experiment, the sample rates used were not uniform. The controller
had a sample rate of 0.02s, while the rest of the system was sampled at 1s. This unfortunate
situation came forth from the combination of the controller used on the swing-up pendulum
experiment, and the ATV-ISS simulator as used in its original form. Trying to change the
sample rate of the controller, appears to lead to instability in the Euler integration of the
value function and system dynamics weights, used to represent them, while changing the
sample rate of the rest of the system, so that continuous measurement data and actuation
capabilities become available, leads to an unstable algorithm for unknown reasons, even
when the measurement noise is neglected. A possible cause could be the limited informa-
tion capabilities of the function approximation method. An example of such an unstable
algorithm is depicted in Figure 7.12.

Simulation shows us that the removal of the measurement noise does not result in
better control performance. One would expect exactly the opposite to be true, although
satisfactory results are obtained in neither case. A probable reason for this behavior is
that the measurement noise could be acting as some sort of high-frequency exploration in
addition to the controller’s exploration noise. Simulation with measurement noise produce
the highest peaks in trial duration, while simulation without measurement noise results in
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Figure 7.12: Example of instability of the algorithm

much more stable learning.

A possible solution to the problem of the unstable Euler integration is to replace
the discrete Euler integration method with continuous time integrators. This should have
eliminated the problem of unstable integration, but in trying to do so, the computational
environment (Matlab), persistently aborts with a segmentation fault, or the message of
singularities within the algorithm, for both fixed-step and variable-step integration. For the
moment, it is unclear why the environment became unstable.

In order to solve the problem of limited information capabilities of the normalized
radial basis functions, the choice of a more suitable function approximation method, such
as the multi-layer perceptron, would be the next step in improving overall capabilities of
the algorithm. However, it is the authors opinion, that such a decision, would only make
sense, when the issue of the unstable Euler integration method is resolved.

Since the use of the multi-layer perceptron is expected to give rigorous improvement
in performance of the algorithm (Appendix C), however, it is advisable to explore the full
potential of the MLP at a later stage. It must be accounted for, that the use of the MLP
will confront the researcher with some unexpected matters concerning the computational
demands. First of all, again, simplifications involving the use of rectangular grid (Section
5.3) will not hold. Second, the convergence properties of the MLP are much worse. That is,
the computation time of a single trial will take less time, because the MLP does not suffer
from the curse of dimensionality, but overall computation will almost certainly consume a
multitude of the current simulation time.

Again, the first attempt to integrate the use of an MLP, without the use of contin-
uous time integrators, were unsuccessful. The structural design of such a controller, is very
complex, so a minor probably could have caused this. Unfortunately, there was not enough
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time, to search for them.

Furthermore, the reinforcement learning controllers used in the original setup, were
initialized as linear PD controllers of the same configuration as used for all other DOF’s,
and form a non-linear extension to PD-controllers, while the controllers used in the current
experiment were initialized randomly. While it is difficult to transfer this condition to the
current controllers, because of the radial basis functions, it should be possible to reshape
the policy (equation (3.20)) so that it starts off as a PD controller. For example, we could
leave out the sigmoid function and initialize the partial derivative of the system dynamics
as a constant, e.g. 1, while initializing the partial derivative of the value function as a PD
linear control surface.
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CHAPTER 8

CONCLUSION AND RECOMMENDATIONS

8.1. Conclusion

In this report, an attempt to improve the current control strategies used in the
control of the relative lateral port-to-port motion during the proximity operations of the
rendezvous and docking mission of the ATV to the ISS has been described. To that end,
advanced reinforcement learning techniques in continuous space and time have been applied.

The existing algorithm was improved, by slightly modifying the original equations.
After testing the algorithm on the inverted pendulum swing-up, it was ported to the ATV-
ISS simulator without any trouble.

A severe drawback of the reinforcement learning algorithm, is that it is not partic-
ularly suitable for mission-critical tasks, such as the docking procedure, because it learns
on the basis of trail-and-error and is therefor not hundred percent reliable, even when the
exploration is disabled and the learning parameters are set to zero.

Furthermore, there are some minor inconveniences regarding the mathematical con-
straints of the algorithm. For example, the system dynamics f(x,u) have to be linear and
r(x,u) has to convex with respect u, respectively. For most systems, however, this is not a
real problem.

The greatest advantage of reinforcement learning, is that it is able to compensate
for incomplete modeling of the system dynamics, wearing, and environmental fluctuations,
and acquires an optimal controller for an optimal model.

Furthermore, an extension to the self-organizing map has been proposed as the
technology that enables us to dynamically cluster a high-dimensional state space, as a
means to create a suitable distribution of the radial basis functions, while retaining the
possibility to extract valuable visual information and to monitoring the algorithm during
operation. This enables us to see inside a continuous space and time reinforcement learning
controller and learn from its evolution.

8.2. Recommendations

Further research in this area is certainly necessary, therefore many improvements
have been suggested in Section 7.3. The most important ones being the use of the continuous
equations, and the use of the multi-layer perceptron.
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When all the issues stated in Section 7.3 are resolved, the design of a MIMO con-
troller should be considered. While the design of a MIMO controller using the current
control strategy will not be advantageous, due to the the curse of dimensionality, it could
well be that in applying the above improvements, the controller will perform significantly
better and will demand much less computational resources.

Further, both the exploration signal and the immediate reward play a significant role
in the behavior of the reinforcement learning algorithm. Slightly modified extremes of the
reward function, for example, may lead to a collapse of the learning curve. Therefore, further
research into making these processes adaptive could lead to a significant improvement in
the overall performance of the reinforcement learning algorithm.

Also, it would be good to investigate the use of adaptive learning rates to refine the
learning as specified by some objective when needed. At moments the controller succeeds
in controlling the task at hand, a fine-tuning phase could further improve the controller
performance.

Genetic algorithms could be used to explore the parameter space for a global op-
timum, although this process would, given the current computational resources, take too
much time to be of any use.
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APPENDIX A

THE HJB EQUATION FOR DISCOUNTED REWARDS

We devide the integral (3.5) into two parts [t, t+ ∆t] and [t+ ∆t,∞] and then solve
the optimization problem as

V ∗(x(t)) = max
u(s)∈U,t≤s<t+∆t

[∫ t+∆t

t
e−

s−t
τv r(s)ds+ e−

∆t
τv V ∗(x(t+ ∆t))

]
(A.1)

For small ∆t, the first term is approximated as

r(t)∆t+O(∆t) (A.2)

and the second term is Taylor expanded as

V ∗(x(t+ ∆t)) = V ∗(x(t)) +
∂V ∗

∂x(t)
f(x(t),u(t))∆t+O(∆t) (A.3)

By substituting (A.2) and (A.3) in (A.1) and collecting V ∗(x(t)) on the left-hand
side, we have an optimality condition for [t, t+ ∆t] as

(1−e−
∆t
τv )V ∗(x(t)) = max

u(s)∈U,t≤s<t+∆t

[
r(t)∆t+ e−

∆t
τv
∂V ∗

∂x(t)
f(x(t),u(t))∆t+O(∆t)

]
(A.4)

By dividing both sides by ∆t and taking ∆t to zero, we have a condition for the
optimal value function

1
τv
V ∗(x(t)) = max

u(t)∈U

[
r(x(t),u(t)) +

∂V ∗(x)
∂x

f(x(t),u(t))
]

(A.5)
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APPENDIX B

NORMALIZED RADIAL BASIS FUNCTIONS

A normalized radial basis function network consists of three types of parameters:

• The output layer weights which determine the heights of the basis functions.

• The centers which determine the positions of the basis functions.

• The standard deviations which determine the form of the radial basis functions.

Let

x =
[
x1 x2 · · · xn

]T
∈ Rn (B.1)

be in input vector to the NRBF network. Then, the Mahalonobis norm ri is computed as

ri = ‖x− ci‖Σi (B.2)

where the center vector ci is defined as

ci =
[
ci,1 ci,2 · · · ci,n

]T
∈ Rn (B.3)

and the norm matrix Σi as

Σi =


σ−2
i,1 0 · · · 0
0 σ−2

i,2 · · · 0
...

...
. . .

...
0 0 · · · σ−2

i,n

 ∈ Rn2
(B.4)

For diagonal Σi, identical elements lead to a true radial basis function while different
elements lead to a symmetric basis functions with elliptic countours. Off-diagonal elements
allows for rotations of the basis functions.

Let

Σi = Σ (B.5)

be a diagonal norm matrix with identical elements. We write equation (B.2) as

‖x− ci‖2Σi
= (x− ci)TΣi(x− ci) (B.6)

=
n∑
j=1

(xj − ci,j)2

σ2
j

(B.7)
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The normalized radial basis function (NRBF) network output is calculated by

ŷ =
I∑
i=1

wiΦ̃i(·) (B.8)

where

Φ̃i(·) =
Φi(‖x− ci‖Σi)∑I
j=1 Φj(‖x− cj‖Σj )

(B.9)

Φi(ri) = exp(−1
2
r2
i ) (B.10)

So the output of the network is normalized by the sum of all (non-weighted) hidden layer
neuron outputs. It has the partition of unity property

I∑
i=1

Φi(·) = 1 (B.11)

In contrast to RBF networks, typically NRBF networks are employed without offset, i.e.
w0 = 0, Φ0(·) = 0, because the normalization allows one to fix an output level without any
explicit offset value. A change in one neuron (in the center or standard deviation) affects all
basis functions. Furthermore, it can be gyaranteed that the NRBF network output always
lies in the interval

min
i

(wi) ≤ ŷ ≤ max
i

(wi) (B.12)

Furthermore, the following partial derivatives are needed for the adaptation of the
network

∂ŷ

∂wi
= Φ̃i(·) (B.13)

∂ŷ

∂xi
=

∑I
j=1 Φj(·)

∑I
j=1wjΦ

′
j(·)−

∑I
j=1wjΦj(·)

∑I
j=1 Φ′j(·)(∑I

k=1 Φk(·)
)2 (B.14)

=
∑I
j=1wjΦ

′
j(·)− ŷ

∑I
j=1 Φ′j(·)∑I

k=1 Φk(·)
(B.15)

=
∑I
j=1(wj − ŷ)Φ′j(·)∑I

k=1 Φk(·)
(B.16)

=

∑I
j=1(wj − ŷ)

(
−xi−ci,j

σ2
j

Φj(·)
)

∑I
k=1 Φk(·)

(B.17)
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APPENDIX C

THE MULTI-LAYER PERCEPTRON

C.1. Mathematics of the MLP m
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Figure C.1: The Multi-Layer Perceptron

Let
x =

[
x1 x2 · · · xn

]T
∈ Rn (C.1)

be in input vector to the MLP network. Then the output of the network is defined as

sli = bli +
nl−1∑
j=1

yl−1
j wl−1,l

j,i (C.2)

yli = tanh(sli) (C.3)

y1
i = xi (C.4)

ŷi = yLi (C.5)

where yli is the ith output of the lth layer. The weight factor wl−1,l
j,i and the offset bli are

tunable parameters. Alternatively, this can be written in vector notation as

sl = bl + yl−1Wl−1,l (C.6)

yl = tanh(sl) (C.7)

y1 = xT (C.8)

ŷ = (yL)T (C.9)

The partial derivatives needed for adapting the network are given by

∂yLi

∂wl−1,l
k,j

=
∂yLi
∂ylj
·

∂ylj

∂wl−1,l
k,j

(C.10)
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=
∂yLi
∂ylj
·
(
1− (ylj)

2
)
· yl−1
k (C.11)

(C.12)

∂yLi
∂blj

=
∂yLi
∂ylj
·
∂ylj
∂blj

(C.13)

=
∂yLi
∂ylj
·
(
1− (ylj)

2
)

(C.14)

(C.15)

where
∂yLi
∂ylj

=
nl+1∑
k=1

∂yLi
∂yl+1

k

·
∂yl+1

k

∂ylj
(C.16)

and

∂yl+1
k

∂ylj
=

∂yl+1
k

∂sl+1
k

·
∂sl+1

k

∂ylj
(C.17)

=
(
1− (yl+1

k )2
)
· wl,l+1

j,k (C.18)

(C.19)

C.2. An Example

In this section, a network with two hidden layers, an input and an output layer is
described. The input layer consists of 4 neurons, the first hidden layer of 30 neurons, the
second hidden layer of 15 neurons and the output layer of 2 neurons.

The output layer (l = 4) is described by the following equations

∂y4
1

∂y4
=

[
1 0

]
(C.20)

∂y4
2

∂y4
=

[
0 1

]
(C.21)

∂y4
1

∂b4
=

∂y4
1

∂y4
· ∂y4

∂b4
(C.22)

=
∂y4

1

∂y4
·
(

1−
(
y4
)2
)

(C.23)

∂y4
2

∂b4
=

∂y4
2

∂y4
· ∂y4

∂b4
(C.24)

=
∂y4

2

∂y4
·
(

1−
(
y4
)2
)

(C.25)
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∂y4
1

∂W3,4
=

∂y4
1

∂y4
· ∂y4

∂W3,4
(C.26)

=
(
y3
)T
∗ ∂y

4
1

∂y4
·
(

1−
(
y4
)2
)

(C.27)

∂y4
1

∂W3,4
=

∂y4
1

∂y4
· ∂y4

∂W3,4
(C.28)

=
(
y3
)T
∗ ∂y

4
1

∂y4
·
(

1−
(
y4
)2
)

(C.29)

The second hidden layer (l = 3) is described by the following equations

∂y4
1

∂y3
=

∂y4
1

∂y4
· ∂y4

∂y3
(C.30)

=
∂y4

1

∂y4
·
(

1−
(
y4
)2
)
∗
(
W3,4

)T
(C.31)

∂y4
2

∂y3
=

∂y4
2

∂y4
· ∂y4

∂y3
(C.32)

=
∂y4

2

∂y4
·
(

1−
(
y4
)2
)
∗
(
W3,4

)T
(C.33)

∂y4
1

∂b3
=

∂y4
1

∂y3
· ∂y3

∂b3
(C.34)

=
∂y4

1

∂y3
·
(

1−
(
y3
)2
)

(C.35)

∂y4
2

∂b3
=

∂y4
2

∂y3
· ∂y3

∂b3
(C.36)

=
∂y4

2

∂y3
·
(

1−
(
y3
)2
)

(C.37)

∂y4
1

∂W2,3
=

∂y4
1

∂y3
· ∂y3

∂W2,3
(C.38)

=
(
y2
)T
∗ ∂y

4
1

∂y3
·
(

1−
(
y3
)2
)

(C.39)

∂y4
2

∂W2,3
=

∂y4
2

∂y3
· ∂y3

∂W2,3
(C.40)

=
(
y2
)T
∗ ∂y

4
2

∂y3
·
(

1−
(
y3
)2
)

(C.41)

The input layer (l = 2) is described by the following equations



THE MULTI-LAYER PERCEPTRON 71

∂y4
1

∂y2
=

∂y4
1

∂y3
· ∂y3

∂y2
(C.42)

=
∂y4

1

∂y3
·
(

1−
(
y3
)2
)
∗
(
W2,3

)T
(C.43)

∂y4
2

∂y2
=

∂y4
2

∂y3
· ∂y3

∂y2
(C.44)

=
∂y4

2

∂y3
·
(

1−
(
y3
)2
)
∗
(
W2,3

)T
(C.45)

∂y4
1

∂b2
=

∂y4
1

∂y2
· ∂y2

∂b2
(C.46)

=
∂y4

1

∂y2
·
(

1−
(
y2
)2
)

(C.47)

∂y4
2

∂b3
=

∂y4
2

∂y2
· ∂y2

∂b2
(C.48)

=
∂y4

2

∂y2
·
(

1−
(
y2
)2
)

(C.49)

∂y4
1

∂W1,2
=

∂y4
1

∂y2
· ∂y2

∂W1,2
(C.50)

=
(
y1
)T
∗ ∂y

4
1

∂y2
·
(

1−
(
y2
)2
)

(C.51)

∂y4
2

∂W1,2
=

∂y4
2

∂y2
· ∂y2

∂W1,2
(C.52)

=
(
y1
)T
∗ ∂y

4
2

∂y2
·
(

1−
(
y2
)2
)

(C.53)
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APPENDIX D

RADIAL BASIS FUNCTIONS VERSUS THE MULTI-LAYER PERCEPTRON

Properties MLP RBF NRBF

Interpolation behavior + − +
Extrapolation behavior 0 − +
Locality − ++ +
Accuracy ++ 0 0
Smoothness ++ 0 +
Sensitivity to noise ++ + +
Parameter optimization −− + +∗ /−−∗∗ + +∗ /−−∗∗

Structure optimization − + −
Online adaptation −− + +
Training speed −− +∗/−−∗∗ +∗/−−∗∗

Evaluation speed + 0 0
Curse of dimensionality ++ − −
Interpretation −− 0 0
Incorporation of constraints −− 0 0
Incorporation of prior knowledge −− 0 0
Usage ++ 0 0

∗ = linear optimization, ∗∗ = nonlinear optimization,
+ + /−− = model properties are very favorable / undesirable.

Table D.1: Comparison between MLP and RBF networks [12]
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